УДК 619:616.98:579.873.21:577.21:616-076

А.В. Скрыпник

(Национальный научный центр «Экспериментальной и клинической ветеринарной медицины», Харьков, Украина)

ПРИМЕНЕНИЕ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ МЕТОДОВ ДЛЯ ИЗУЧЕНИЯ ВИДОВОГО СООТНОШЕНИЯ МИКОБАКТЕРИЙ, ИЗОЛИРОВАННЫХ В УКРАИНЕ ОТ РЕАГИРОВАВШЕГО НА ТУБЕРКУЛИН КРС

Введение

Проблема туберкулеза является актуальной как для гуманной, так и для ветеринарной медицины. Приблизительно треть населения земного шара инфицирована бактериями, принадлежащими к *Mycobacterium tuberculosis* complex [21, 23, 28].

Несмотря на значительные достижения ветеринарной службы в борьбе с туберкулезом, эта опасная зооантропонозная инфекция регистрируется в ряде регионов как Украины, так и Российской Федерации. Сумма убытков, причиняемых инфекцией *Мусоbacterium bovis* сельскому хозяйству всего мира, достигает ежегодно 3 млрд долларов [26].

В настоящее время диагностика туберкулеза в странах СНГ осуществляется с применением комплекса эпизоотологического, аллергического, патолого-анатомического и бактериологического методов исследований.

Аллергическая диагностика туберкулеза усложняется наличием неспецифических реакций на туберкулин для млекопитающих, обусловленных непатогенными для животных атипичными микобактериями [7]. Определение эпизоотической ситуации по туберкулезу в стадах животных возможно благодаря применению симультанной пробы, в комплексе с другими методами [1]. Во многих благополучных по туберкулезу хозяйствах этиологический фактор реактивности КРС к туберкулину остается неустановленным [8], а методы дифференциации специфических и неспецифических реакций на туберкулин требуют дальнейшего усовершенствования.

Согласно действующей в Украине инструкции «О мероприятиях по профилактике и оздоровлению животноводства от туберкулеза», результаты лабораторных исследований, с учетом эпизоотологических данных, являются регламентирующими в постановке диагноза. В лабораториях ветеринарной медицины применяют методы

бактериологической диагностики, в частности определения фенотипических признаков микобактерий (кислотоустойчивость, характер и скорость роста колоний, наличие или отсутствие определенных биохимических характеристик, вирулентность для лабораторных животных и т.п.) [2, 4, 10]. Существующая методика идентификации и видовой дифференциации микобактерий, включающая в себя более десяти культурально-морфологических, биохимических и биологических тестов, трудоемка и позволяет в течение 30-90 суток определить видовую принадлежность только около 20 из более чем 90 систематизированных видов микобактерий [2, 10, 13, 14, 27].

Разработка методов ранней диагностики этой инфекции является важнейшей составляющей системы контроля распространения туберкулеза. Развитие новейших технологий на основе полимеразной цепной реакции (ПЦР) и секвенирования открывает новые перспективы в диагностике туберкулеза, в частности детекции и дифференциации возбудителей, проведении их генотипирования и молекулярно-эпизоотологического мониторинга [15, 17, 21]. Перспективность использования молекулярно-генетических методов заключается в их универсальности, надежности, высокой специфичности и чувствительности, значительном сокращении сроков проведения диагностики туберкулеза [3, 27]. Применение этих методов дает возможность установления или опровержения диагноза туберкулеза в хозяйствах путем подтверждения наличия атипичных микобактерий и отсутствия микобактерий туберкулезного комплекса, предотвращая вынужденный забой скота, и проведения оздоровительных мероприятий в более короткое время.

Материалы и методы

Исследования проводили в лаборатории молекулярной диагностики Национального научного центра «Институт экспериментальной и клинической ветери-

Результаты типирования культур M. avium complex

№ куль- туры	M.a.a., M.a.s., M.a.h. (IS1245)	M.a.a, M.a.s. (IS901)	M.a.a, M.a.s. (IS902)	M.a.h. (FR300)	M. intracellul. (16S рДНК)	Результат типирования
889	+	+	+	_	n	Maa
913	+	+	+	-	n	Maa
914	+	-	_	+	_	Mah
915	+	+	+	-	-	Maa
916	+	-	-	+	n	Mah
917	+	-	-	+	-	Mah
918	+	+	+	-	_	Maa
919	+	_	_	±	-	Mah
920	+	-	-	+	n	Mah
921	+	+	+	-	-	Maa
922	+	-	_	+	n	Mah
923	+	_	_	+	_	Mah
924	+	_	_	+	_	Mah
925	+	-	_	+	-	Mah
926	+	-	-	+	n	Mah
927	+	-	-	+	-	Mah
941	+	_	_	+	n	Mah
950	+	-	-	+	n	Mah
951	+	+	+	-	_	Maa
952	+	-	_	+	n	Mah
953	+	_	_	+	_	Mah
958	+	_	_	+	_	Mah
1441	+	+	+	-	_	Maa
1528	+	-	_	+	_	Mah

^{«+» -} реакция позитивная;

нарной медицины» (г. Харьков, Украина), лаборатории генной инженерии и Национальной референс-лаборатории по изучению туберкулеза и паратуберкулеза КРС Федерального исследовательского института здоровья животных имени Ф. Лёффлера (г. Йена, Германия).

Исследовано 80 культур микобактерий, изолированных от КРС, который реагировал на введение туберкулина для млекопитающих и был забит с диагностической целью, на территории Запорожской, Кировоградской, Киевской, Луганской, Николаевской, Одесской, Харьковской, Херсонской, Черниговской областей в период с 1998 по 2004 годы. Культуры микобактерий были любезно предоставлены д. вет. н., проф. А.И. Завгородним (ННЦ «ИЭК-ВМ»), к. вет. н. А.М. Дяченко (Черниговский институт сельскохозяйственной микробиологии УААН), к. вет. н. Н.В. Селищевой (Одесская исследовательская станция

ННЦ «ИЭКВМ»).

Рекультивирование всех исследуемых культур осуществляли одновременно на 4 питательных средах: 7H9 и 7H10 Meaddlebrook, Stonebrink, Ogawa. Пробирки с посевами инкубировали при температуре 37-38° С в аэробных условиях до накопления достаточного количества бактериальной массы.

ДНК экстрагировали из бактериальной массы способом ультразвуковой дезинтеграции клеток (35 кГц, 10 минут) с последующей их обработкой нагреванием при температуре 99-100° С в течение 10 минут. ДНК сепарировали центрифугированием при 12000 об/мин в течение 5 минут. Для дальнейших исследований использовали полученный супернатант.

Полимеразную цепную реакцию применяли для индикации рода Mycobacterium с последующей дифференциацией M. tuberculosis complex, M.

^{«-» –} реакция негативная;

^{«±» –} реакция сомнительная;

[«]п» – реакцию не проводили;

M.a.a – *M. avium* subsp. *avium*;

M.a.h – *M. avium* subsp. *hominissuis*;

M.a.s – M. avium subsp. silvaticum;

M. intracellul. – M. intracellulare

Таблица 2

Схематическое отображение профилей гибридизации культур микобактерий с помощью сполиготайпинга

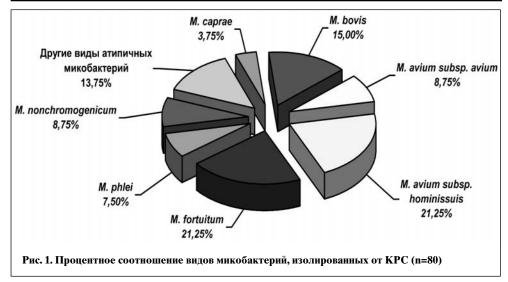
№ куль- туры	1 10	Спейсери споліг 20	опрофілю 30	43	Результат дифферен- циации
901					M. bovis
1502					M. bovis
1503					M. bovis
1505					M. caprae
1511					M. bovis
1520					M. bovis
1521					M. bovis
1523					M. bovis
1527					M. bovis
1539				□□□■□□□□□	M. bovis
1544					M. caprae
1545					M. caprae
1546					M. bovis
1547					M. bovis
1548					M. bovis

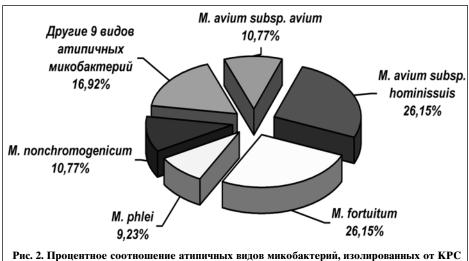
«■» – наличие спейсера; «□» – отсутствие спейсера

Таблица 3

Результаты видовой дифференциации атипичных микобактерий с помощью секвенирования 16S рДНК

Вид микобактерий	Количество изолятов	Процент от общего количества культур (%)		
M. fortuitum	17	21,3		
M. nonchromogenicum	7	8,8		
M. phlei	6	7,5		
M. thermoresistibile	2	2,5		
M. duvalii	2	2,5		
M. hassiacum	1	1,3		
M. smegmatis	1	1,3		
M. frederiksbergense	1	1,3		
M. engbaekii	1	1,3		
M. doricum	1	1,3		
M. parascrofulaceum	1	1,3		
M. elephantis	1	1,3		


bovis, M. tuberculosis, M. avium complex (с дальнейшим типированием его до подвидов), M. intracellulare, [12].


Сполиготайпинг. Для проведения сполиготайпинга использовали коммерческий набор IM9702 (Isogen Bioscience BV). Амплификацию спейсеров осуществяли с помощью ПЦР с использованием праймеров DRa (CCG AGA GGG GAC GGA AAC) и DRb (GGT TTT GGG TCT GAC GAC), праймер DRa мечен биотином [24].

Мастер-микс готовили в объеме 50 мкл на 1 пробу: 5,0 мкл 10х ПЦР-буфера (с 1,5 мМ MgCl2); 1,0 мкл смеси дНТФ (10 мМ); по 4,0 мкл праймеров DRa и DRb (20 пМ/ мкл); 0,4 мкл Таq-полимеразы (5 ЕД/мкл); у мкл воды для ПЦР (y=35,6 мкл - x). К мастер-миксу прибавляли x мкл образца ДНК.

Параметры амплификации: первичная денатурация — 96° C, 180 сек; денатурация — 96° C, 60 сек; отжиг — 55° C, 60 сек; элонгация — 72° C, 30 сек; финальная элонгация — 72° C, 300 сек; циклов — 35.

Смесью из 20 мкл ПЦР-продукта и 150 мкл 2xSSPE/0,1%SDS после температурной обработки заполняли слоты миниблоттера с заранее помещенной туда мембраной (Isogen Bioscience BV) и проводили гибридизацию в течение 1 ч при 60° С. После этого мембрану помещали в бутыль и дважды обрабатывали буфером 2xSSPE/0,1%SDS по 10 минут, вращая с помощью

ротатора. Результаты гибридизации выявляли на основе хемилюминисценции путем инкубации мембраны в буфере 2xSSPE/ 0.5%SDS с 2.5 мкл конъюгата стрептавидин-пероксидазы (Roche), а затем путем обработки ECL^{TM} реагентом для вестерн-блоттинга с последующей детекцией на фотопленке (HyperfilmTMECLTM, Amersham pharmacia biotech).

Форматирование бинарного кода в восьмеричный осуществляли по алгоритму Dale J.W. и соавт. [25]. Анализ результатов проводили с использованием базы данных SpolDB4 [20].

Секвенирование. Секвенировали гипервариабельный участок гена 16S рибосомальной РНК (с 129 по 266 позицию относительно картирования E. coli), для чего этот участок амплифицировали методом ПЦР с использованием праймеров M285 (GAG AGT TTG ATC CTG GCT CAG; позиция отжига 9-30) и M264 (TGC ACA CAG GCC ACA AGG GA; позиция отжига 1046-1027).

Мастер-микс на 1 пробу содержал: 5 мкл буфера для ПЦР (10х); 2 мкл смеси дНТФ (2 мм); по 1 мкл растворов праймеров (20 пМ); 0,2 мкл Таq-полимеразы (5 ЕД/мкл); 39,8 (38,8) мкл деионизированной воды. Образец ДНК вносили в объеме 1-2 мкл. Амплификацию осуществляли по такой программе: первичная денатурация – 96° С, 60 сек; денатурация – 96° С, 30 сек; отжиг – 58° С, 60 сек; элонгация – 72° С, 60 сек; финальная элонгация – 72° С, 300 сек; количество циклов – 35.

(n=65)

Ампликоны очищали с помощью QiAquick Gel Extraction Kit (Qiagen, Fepмания). Очищенный таким образом ПЦРпродукт использовали для сиквенс-амплификации с одним праймером М285, для чего смешивали 4 мкл деионизированной воды; 2,5 мкл готового мастер-микca «Terminator Ready Reaction Mix (Big Dye)», который содержал флуоресцентно меченные дНТФ (терминаторы) (АВІ PRISM Dye Terminator Cycle-Sequencing Ready Reaction Kit, Applied Biosystems); 2 мкл очищенного ПЦР-продукта (приблизительно 50-70 нг ДНК); 1 мкл праймера (3,2 пМ). Амплифицировали по такой программе: первичная денатурация – 96° C, 60 сек; денатурация - 96° C, 30 сек; отжиг - 50° C, 60 сек; элонгация – 60° C, 240 сек; количество циклов – 25.

После амплификации осуществляли автоматическое секвенирование ДНК на секвенаторе ABI PRISM 310 Genetic Analyser (Applied Biosystems, США). Определение вида исследуемых микобактерий осуществляли с использованием таких баз данных, как GenBank [16], EMBL, DDBJ, RIDOM [22].

Результаты и обсуждение

Полимеразная цепная реакция. Все исследованные культуры были положительны в ПЦР с родоспецифическими праймерами. По результатам исследований в ПЦР с праймерами, комплементарными IS 6110, к *М. tuberculosis* complex отнесено 15 из 80 культур, т.е. 18,75%. Все эти культуры были дифференцированы как *М. bovis* в ПЦР с праймерами, специфичными этому возбудителю. В то же время они были негативны с праймерами, специфичными *М. tuberculosis*.

Из 80 исследованных культур положительными в ПЦР с праймерами, специфичными *М. avium* complex, были 24 культуры, что составило 30%. Из них 7 культур (8,75%) было типировано как *М. avium* subsp. *avium*, 17 культур – как *М. avium* subsp. *hominissuis* (21,25%) (табл. 1).

Сполиготайпинг. 15 культур, дифференцированных методом ПЦР как *M. bovis*, были исследованы с помощью сполиготайпинга (табл. 2). Из них 12 было дифференцировано как *M. bovis*, 3 – как *M. caprae*.

Секвенирование. Видовую принадлежность 41 культуры микобактерий, вид которых установить методом ПЦР не удалось и потому отнесенных к атипичным, определяли с помощью секвенирования гипервариабельного участка 16S рДНК (табл. 3).

Видовой состав исследованных мико-

бактерий, изолированных из органов КРС, представлен на рис. 1. Как свидетельствуют данные этого рисунка, наряду с представителями M. tuberculosis complex (M. bovis и *M. caprae*), на долю которых приходится 18,75%, от КРС чаще всего выделяются такие виды атипичных микобактерий: М. avium complex – 30,0% (причем количество изолятов M. avium subsp. hominissuis в 2,4 раза превышает количество изолятов М. avium subsp. avium); M. fortuitum – 14,4%; M. nonchromogenicum – 7,8%; M. phlei – 6,7%. Количество других 9 видов атипичных микобактерий, выделенных от КРС, также весомо, однако их изолирование является единичными случаями.

Таким образом, процентное соотношение именно атипичных видов микобактерий, выделенных от КРС, который реагировал на туберкулин, составляет: М. avium – 36,92% изолятов, в частности М. avium subsp. hominissuis – 26,15%, М. avium subsp. avium – 10,77%; М. fortuitum – 26,15%; М. nonchromogenicum – 10,77%; М. phlei – 9,23%; другие 9 видов атипичных микобактерий – 16,92% (рис. 2).

Анализируя результаты, необходимо отметить невысокий процент выделенных из органов реагировавшего на туберкулин КРС изолятов микобактерий, дифференцированных как М. bovis и М. caprae, на долю которых приходится лишь одна пятая от всех изолятов. Полученные данные ставят под сомнение специфичность как туберкулина, использовавшегося для проведения аллергических исследований, так и самого метода туберкулинизации, и свидетельствуют о необходимости обязательного применения как симультанной аллергической пробы, так и молекулярно-генетических методов диагностики туберкулеза.

Обращает на себя внимание высокий процент (30%) изолятов М. avium. Полученные результаты не сходятся с данными официальной отчетности ветеринарной службы Украины, согласно которым за период с 1998 по 2004 гг. процент выделения от КРС М. avium составил в среднем 2,8%. Данная ситуация может быть объяснена несовершенством применяемых в лабораторной практике методов дифференциальной диагностики, основанных на изучении фенотипических признаков микобактерий.

Наличие штаммов M. avium complex в продуктах животноводческого происхождения представляет угрозу возможной трансмиссии этой инфекции человеку, в частности ВИЧ-инфицированным. При

этом нетуберкулезные микобактериозы являются основной причиной летальных случаев больных СПИДом [5, 18, 19, 23, 28].

Организм животного представляет собой благоприятную среду для селекции вирулентных для человека штаммов оппортунистических видов микобактерий, в частности М. avium complex. Поэтому внедрение мероприятий, направленных на расширение спектра применяемых диагностических средств, в частности использование полимеразной цепной реакции, усилит контроль над распространением МАС и явится важным условием предотвращения передачи этой инфекции потребителям животноводческой продукции.

Закономерный интерес вызывает также вопрос столь высокого (81,25%) процента выделения от КРС атипичных микобактерий.

По нашему мнению, это может быть обусловлено значительной степенью сенсибилизации КРС атипичными микобактериями, предопределяя парааллергические реакции на туберкулин, что согласуется с данными А.И. Завгороднего [2], В.М. Горжеева [7], В.П. Шишкова и В.П. Урбана [6]. Проникновению в организм и размножению атипичных микобактерий способствуют несоответствующие санитарно-гигиенические условия содержания животных [7, 9, 11], когда эти микобактерии получают возможность развиваться в чрезвычайно ослабленном организме.

Наибольшую роль в сенсибилизации КРС к туберкулину, очевидно, играют *M.* avium complex, в частности *M.* avium subsp. hominissuis, и М. fortuitum. Полученные нами результаты относительно видового состава атипичных микобактерий, чаще всего выделяющихся от КРС, наводят на мысль о возможности усовершенствования аллергических исследований туберкулеза повышением их специфичности путем использования для симультанной аллергической пробы M. avium subsp. hominissuis и *M.* fortuitum.

Другой причиной выделения атипичных микобактерий может быть смешанная инфекция, вызванная патогенными видами комплекса M. tuberculosis, благодаря чему убиквитарные атипичные микобактерии получили возможность своего развития в пораженном организме. Во время

исследований атипичные микобактерии не дали возможности исследовать в смешанных культурах действительно патогенные микобактерии из-за их быстрого роста, который подавил рост патогенных микобактерий. Еще одной причиной может быть лабораторная контаминация изолированных патогенных культур атипичными микобактериями.

Выводы

- 1. Существующие проблемы специфичности прижизненной диагностики туберкулеза КРС, связанные с явлением парааллергических реакций, обусловленных сенсибилизацией организма персистенцией атипичных микобактерий, могут быть решены благодаря широкомасштабному применению в ветеринарной фтизиатрии молекулярно-генетических методов, в частности полимеразной цепной реакции, которые являются рутинными в лабораторной диагностике развитых стран и дают возможность поставить этот опасный зооантропоноз под жесткий контроль.
- 2. При изучении атипичных микобактерий, выделенных от КРС, реагировавшего на туберкулин для млекопитающих, установлено, что главная роль в сенсибилизации КРС принадлежит М. avium complex (36,92% изолятов среди атипичных видов микобактерий), в частности М. avium subsp. hominissuis 26,15%, и М. fortuitum (26,15%), на долю М. nonchromogenicum приходится 10,77%, М. phlei 9,23%, других 9 видов атипичных микобактерий 16,92%.
- 3. Повышение специфичности аллергической диагностики туберкулеза КРС может быть осуществлено путем использования для симультанной аллергической пробы *M*. avium subsp. hominissuis и *M*. fortuitum, что нуждается в подтверждении широкомасштабными исследованиями.
- 4. С помощью секвенирования впервые в Украине получены данные о выделении от КРС таких видов атипичных микобактерий, как M. frederiksbergense, M. doricum, M. parascrofulaceum, M. hassiacum, M. elephantis.

Выражаем благодарность за помощь в проведении исследований Dr. K. Sachse, Dr. I. Moser, Dr. H. Hotzel (Friedrich Loeffler Institut), и за возможность проведения исследований Немецкой службе академических обменов (DAAD).

РЕЗЮМЕ

В статье изложены результаты молекулярно-генетического скрининга 80 культур микобактерий, изолированных в Украине от КРС, реагировавшего на туберкулин для млекопитающих. Показано, что процент изолятов M. tuberculosis complex (M. bovis и M. caprae) составляет лишь 18,75% от общего количества выделенных культур. Продемонстрирована превалирующая роль M. avium complex

(30,0% изолятов), в частности M. avium subsp. hominissuis (21,25%) и M. fortuitum (21,25%), в сенсибилизации КРС к туберкулину. Показана необходимость широкого применения в лабораторной практике молекулярно-генетических методов диагностики туберкулеза.

SUMMARY

The results of molecular and genetic screening of 80 Mycobacteria cultures, isolated in mammal tuberculin-reactive cattle in the Ukraine, are given in the paper. It is shown that the percentage of M. tuberculosis complex isolates (M. bovis and M. caprae) is only 18.75% of the total amount of isolated cultures. The predominant role of M. avium complex (30.0% of the isolates), and particularly M. avium subsp. hominissuis (21.25%) and M. fortuitum (21.25%), in cattle sensibilization to tuberculin is shown. The necessity of the wide application of molecular and genetic methods for tuberculosis diagnostics in the laboratory practice is demonstrated.

Литература

- Достижения науки и практики в борьбе с туберкулезом животных в хозяйствах Украины /Ю.Я. Кассич [и др.] // Вет. патология. 2004. № 1–2 (9). С. 38-41.
- Завгородний, А.И. Виды микобактерий, распространенные в хозяйствах Украины, и их эпизоотическое значение: дис... д-ра вет наук: 16.00.03 / Завгородний Андрей Иванович. Харьков, 1997. 298 с.
- Костюк, Р.В. ПЦР при контроле благополуччя скота по туберкулезу / Р.В. Костюк //Вет. патология. 2004. № 1-2 (9). С.105-107.
- Методические рекомендации по уточнению диагноза на туберкулез у крупного рогатого скота благополучных хозяйств и определению видовой принадлежности культур микобактерий /Ю.Я. Кассич [и др.] //Украинский научно-исследовательский институт экспериментальной ветеринарии. Харьков, 1987. 19 с.
- Пузанов, В.А. Бактериемия при туберкулезе и других микобактериальных инфекциях /В.А. Пузанов, М.В. Косарева //Проблемы туберкулеза. 1999. №1. С.54-59.
- 6. Шишков, В.П. Туберкулез сельскохозяйственных животных /В.П. Шишков, В.П. Урбан. М.: Агропромиздат, 1991. 255 с.
- Горжеєв, В.М. Епізоотологічний моніторинг та удосконалення системи боротьби з туберкульозом великої рогатої худоби у господарствах України: дис ... канд.. вет. наук: 16.00.08 / Горжеєв Володимир Михайлович. Харьков., 2005. 126 с.
- Динаміка епізоотологічного процесу при мікобактеріальних інфекціях великої рогатої худоби в господарствах Причорномор'я / Н. Селіщева [та ін.] //Вет. Мед. України. 2006. № 12. С.12-14.
- До питання діагностики туберкульозу тварин /Ю. Колос [та ін.] // Ветеринарна медицина України. 2006. № 11. С.10-12.
- Дяченко, Г. Проблема діагностики туберкульозу сільськогосподарських тварин у сучасних умовах /Г. Дяченко, Н. Кравченко, В. Романенко // Вет. Мед. України. 2006. № 1. С.5-7.
- Зелінський, М. Туберкульоз великої рогатої худоби. Причини виникнення та фактори, що стримують оздоровлення неблагополучних господарств /М. Зелінський // Вет. Мед. України. 2000. № 6. С.15-16.
- Скрипник, А.В. Молекулярно-генетична диференціація мікобактерій, виділених в Україні, та іх філогенетичні взаємозв'язки: дис... канд.. вет. наук: 16.00.03 / Скрипник Артем Валерійович. Харьков., 2007. 182 с.
- Conventional methods versus 16S ribosomal DNA sequencing for identification of nontuberculous Mycobacteria: cost analysis / V.J. Cook [et al.] //J. Clin.

- Microbiol. 2003. Vol. 41. P.1010-1015.
- Dostal, S. Concise guide to mycobacteria and their molecular differentiation / S. Dostal, E. Richter, D. Harmsen. Wurzburg: Ridom Press, 2003. P. 206.
- Dvorska, L. Strategies for differentiation and typing of medically important species of mycobacteria by molecular methods / L. Dvorska [et al.] // Vet. Med. 2001. Vol.46. P.11-12.
- GenBank / D.A. Benson [et al.] // Nucleic Acids Res. 2005. Vol. 1, № 33 (Database issue). P. 34-38.
- 17. Haddad, N. Molecular differentiation of Mycobacterium bovis isolates. Review of main techniques and applications / N. Haddad, M. Masselot, B. Durand // Res. in Vet.y Sci. 2004. Vol. 76. P.1-18.
- Horsburgh, C.R. Epidemiology of Mycobacterium avium complex disease / C.R. Horsburgh //Am. of Med. 1997. Vol. 102, №5. P.11-15.
- Koh, W.-J. Nontuberculous mycobacterial pulmonary diseases in immunocompetent patients / W.-J. Koh, O.J. Kwon, K.S. Lee // Korean J. Radiol. 2002. № 3. P. 145-157
- 20. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology / K. Brudey [et al.] //BMC Microbiol. 2006. № 6. P.23.
- 21. Rastogi, N. The mycobacteria: an introduction to nomenclature and pathogenesis / N. Rastogi, E. Legrand, C. Sola //Rev. Sci. Techn. Off. Int. Epiz. 2001. Vol. 20, №1. P. 21-54.
- 22. RIDOM: comprehensive and public sequence database for identification of Mycobacterium species / D. Harmsen [et al.] //BMC Infect. Dis. 2003. Vol. 3. P.26.
- Schbtt-Gerowitt, H. On the development of Mycobacterial infections / H. Schbtt-Gerowitt //Zbl. Bakt. 1995. Bd. 283. S.5-13.
- Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology / J. Kamerbeek [et al.] //J. of Clin. Microbiol. 1997. P. 907-914.
- 25. Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standartised nomenclature /J.W. Dale [et al.] //Int. Journal of Tuberculosis and Lung Diseases. 2001. Vol. 5, № 3. P.216-219.
- 26. The complete genome sequence of Mycobacterium bovis / T. Garnier [et al.] //PNAS. 2003. Vol. 100, № 13. P.7877-7882.
- 27. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods / B. Springer [et al.] //J. Clin. Microbiol. 1996. Vol. 34. P.296-303.
- 28. World Health Organization. [Electronic resourse].: Fact sheet No.104. 2006. Mode of access