Контактная информации об авторах для переписки

Абонеев Василий Васильевич, директор ГНУ Ставропольский научно-исследовательский институт животноводства и кормопроизводства, Заслуженный деятель науки РФ, член-корреспондент РАСХН, доктор сельскохозяйственных наук, профессор.

Скорых Лариса Николаевна, старший научный сотрудник лаборатории овцеводства ГНУ Ставропольский научно-исследовательский институт животноводства и кормопроизводства, кандидат сельскохозяйственных наук, тел. служебный (8652) 35-51-50. e-mail: smu.sniizhk@yandex.ru

Абонеев Дмитрий Васильевич, главный государственный инспектор отдела регионального государственного ветеринарного надзора управления ветеринарии Ставропольского края, кандидат биологических наук.

355017 г. Ставрополь, пер. Зоотехнический, 15 Государственное научное учреждение Ставропольский научно-исследовательский институт животноводства и кормопроизводства Россельхозакадемии) (ГНУ СНИИЖК Россельхозакадемии), тел./факс (8652) 71-70-33.

УДК 619:618.19-002:636.22/.28

Боженов С.Е., Грига Э.Н., Грига О.Э.

(ГНУ Ставропольский НИИ животноводства и кормопроизводства Россельхозакадемии)

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ ОРГАНИЗМА КОРОВ В ЗАВИСИМОСТИ ОТ УРОВНЯ МОЛОЧНОЙ ПРОДУКТИВНОСТИ, ВОЗРАСТА И ПОРОДНОЙ ПРИНАДЛЕЖНОСТИ

Ключевые слова: резистентность, молочная продуктивность, мастит, возраст, порода, биохимического состава сыворотки крови

Многие факторы влияют на развитие и тяжесть воспалительного процесса в молочной железе, основные из них это естественная резистентность организма животного, вирулентность патогенных организмов, стрессовое состояние и состояние доильного оборудования. А.И.Ивашура [2], В.И.Слободяник [7], Г.Н. Кузьмин [4] утверждают, что главное значение для возникновения и проявления воспалительного процесса имеет естественная резистентность всего организма коровы и вымени.

Резистентность - это устойчивость организма к воздействию факторов внешней среды - физических, химических, биологических (возбудителей болезней) и других, способных нарушать равновесие организ-

ма со средой обитания, то есть быть вредными для его жизнедеятельности. Формирование резистентности происходило в процессе длительного периода эволюции под влиянием природных условий и находится в прямой зависимости от способности организма реагировать на воздействие не только обычных, но и болезнетворных агентов изменением своей жизнедеятельности, что предшествует развитию устойчивости к инфекции. Реактивность отражает важнейшие свойства жизнедеятельности организма: обмен веществ, рост, размножение, уровень продуктивности, иммунологическое состояние и многое другое, на что указывают Я.Е Коляков [3], А.Е. Вершигора [1].

Таблица 1 - Результаты исследований неспецифической резистентности организма коров в зависимости от уровня молочной

продуктивности, возраста и породной принадлежности

r	Удой за		Возраст			Порода	
	ю, кг,						
Показатели						крас-	черно –
	до	свыше	до	5-8	9 л ет	ная	пестрая
	3000	3000	4 лет	лет	и старше	степ-	голш-
Бактерицид-							
ность	67,9 ±	55,8 ±	60,0 ±	53,7 ±	69,3 ±	68,5 ±	57,7 ±
крови,%	4,8	4,2	3,9	3,7	4,5	4,4	3,1
Фагоцитарная							
активность	69,8 ±	57,4 ±	61,0	59,9 ±	$2,0 \pm 4,6$	69,9 ±	65,5 ±
лейкоцитов	2,8	2,1	±3,0	3,1		3,2	2,6
крови, %							
Фагоцитарная							
активность	67,1 ±	54,7 ±	59,1	56,0 ±	67.3	65,8	56,5 ±
лейкоцитов	4,5	1,4	±2,8	2,5	±4,1	±3,7	3,3
молока, %							
Фагоцитарный							
индекс	4,0 ±	2,8 ±	3,0	2,5 ±	3,9 ±	4,8 ±	2,9 ±
лейкоцитов	0,13	0,06	±0,07	0,06	0,04	0,15	0,07

Резистентность организма подразделяется на общую (естественную) и иммунологическую. Естественная резистентность является генетически обусловленной способностью организма противостоять неблагоприятному влиянию внешней среды, а иммунологическая реактивность - это комплекс специфических ответных реакций организма на внедрение различных чужеродных агентов (бактерии, вирусы, простейшие, белки, клетки и др.). Оба вида резистентности взаимосвязаны, так как лишь при высоком уровне естественной резистентности, организм животных формирует полноценный иммунный ответ на внедрение специфического агента[5, 6].

Нами проведены иммунобиологические исследования коров для определения неспецифической естественной резистентности организма с учетом возрастного фактора, уровня молочной продуктивности, породной принадлежности, сезонных особенностей кормления и содержания животных. При изучении влияния условий кормления и содержания в различные сезоны года на возникновение мастита у коров, иммунобиологические исследования сочетали с биохимическими исследованиями сыворотки крови.

В результате проведенных исследований (табл.1.) нами установлено, что у коров с высокой продуктивностью, в начале лактационного периода (у первотелок), а также у коров с максимальной молочной продуктивностью, в сравнении с низкопродуктивными коровами до 4-х лет и корова-

ми старше 5-8 лет, отмечаются более низкие показатели неспецифической иммунобиологической реактивности организма и локальной защиты вымени. В частности,

Таблица 2. - Показатели биохимического состава сыворотки крови у коров в зависимости от уровня молочной продуктивности, возраста

и породной принадлежности

	Коровы черно-	Коровы красной степной		
Показатели	пестрой голштинской	породы, в возрасте до 4		
	породы, в возрасте 5-7	лет и выше 8 лет с		
	лет с продуктивностью	продуктивностью		
	более 3000 кг молока	более 3000 кг молока		
Белок общий, г/л	$79 \pm 2,9$	$68 \pm 2,6$		
Глюкоза, моль/л	3,00±0,10	2,38±0,13		
Кальций общий, моль/л	3,09±0,02	2,67±0,03		
Фосфор неорганический,				
ммоль/л	$1,63\pm0,02$	1,39±0,01		
Каротин, мг%	1,22±0,03	0,68±0,02		
Щелочной резерв, об.%	49±1,3	57±1,5		
CO_2				

Таблица 3 - Показатели биохимического статуса и неспецифической естественной резистентности организма коров красной степной и черно-

пестрой голштинской пород в различные сезоны года.

	Месяцы года						
Показатели							
	2.4	5.6	7.0	0.10	11.1		
Белок общий, г/л	$69,7 \pm 1,9$	70,9±3,2	73,8±3,9	81,7 ±4,7	$79,9 \pm 3,3$		
Альбумины, %	$40,0 \pm 1,7$	$39,8 \pm 3,9$	$46,5 \pm 2,9$	$42,0 \pm 2,8$	$42,8 \pm 2,4$		
Альфа - глобулины, %	13,0±2,1	16,1±1,3	13,9± 0,6	15,8 ±1,0	$15,0 \pm 1,3$		
Бета - глобулины, %	17,9±1,3	8,8± 1,4	$7,0 \pm 0,6$	$5,9 \pm 0,3$	5,8± 0,3		
Гамма - глобулины, %	$30,1\pm2,2$	34,7±3,1	$31,8 \pm 2,1$	$34,9 \pm 4,9$	$33,8\pm4,0$		
Глюкоза, ммоль/л	$2,20\pm0,05$	$2,55\pm0,11$	$3,18\pm0,13$	$2,98\pm0,14$	$2,68\pm0,04$		
Кальций общий, ммоль/л	$2,46\pm0,02$	2,53±0,02	3,15±0,05	$3,29 \pm 0,04$	$3,10\pm0,02$		
Фосфор неорганич.ммоль/л	$1,19 \pm 0,01$	1,26±0,02	$1,49 \pm 0,02$	$1,69 \pm 0,03$	$1,4 \pm 0,01$		
Каротин, мг %	$0,39 \pm 0,01$	$0,60 \pm 0,04$	1,11±0,02	$1,15 \pm 0,02$	$0,9\pm0,03$		
Щелочной резерв об.% СО2	45,7±1,1	$47,8 \pm 2,1$	$63,1\pm 1,6$	$67,2 \pm 1,4$	$53,9 \pm 1,5$		
Бактерицидность крови,%	55,8±2,5	$60,1 \pm 2,6$	$55,7 \pm 2,8$	$70,0 \pm 4,3$	$64,7 \pm 2,4$		
Фагоцитарная активность лейкоцитов крови, %	56,9± 1,2	59,8±1,6	57,7±1,5	69,8±1,9	63,7±1,9		
Фагоцитарная активность лейкоцитов молока, %	51,9±1,8	59,9± 1,6	56,8±1,1	$64,7 \pm 2,0$	63,0± 1,5		
Фагоцитарный индекс лейкоцитов молока, %	1,9±0,03	3,1±0,04	2,5±0,03	3,9±0,10	3,7±0,06		
Лизоцимная активность молока, 33Р микробов на агаре, мм	19,0±0,4	19,8± 0,3	20,1 ± 0,6	23,7 ± 0,5	22,0 ± 0,4		

Таблица 4 – Биохимический статус крови и показатели неспецифи-ческой естественной резистентности организма здоровых и больных маститом коров

красной степной и черно-пестрой голштинской пород

	коровы		
Показатели	здоровые	больные острым	
		маститом	
Белок общий, г/л	$80,0 \pm 2,6$	$73,1 \pm 3,3$	
Альбумины, %	$43,3 \pm 3,3$	$44,9 \pm 2,7$	
Альфа - глобулины, %	$14,9 \pm 1,2$	$13,7 \pm 1,9$	
Бета - глобулины, %	$13,1 \pm 1,2$	$17,9 \pm 1,2$	
Гамма - глобулины, %	$29,7 \pm 2,3$	$23,1 \pm 1,5*$	
Глюкоза, ммоль/л	$2,69 \pm 0,07$	2,11 ± 0,02***	
Кальций общий, ммоль/л	$3,00 \pm 0,05$	2,29 ± 0,02***	
Фосфор неорганич., ммоль/л		$1,10 \pm 0,01***$	
Каротин, мг %	$1,42 \pm 0,04$	$0.34 \pm 0.01***$	
Щелочной резерв, об.% СО2	$57,1 \pm 3,3$	43,9 ± 2,3***	
Бактерицидность крови,%	$63,0 \pm 4,2$	$50,7 \pm 0,5*$	
Фагоцитарная активность лейкоцитов крови, %	$67,8 \pm 5,1$	49,9 ± 2,6*	
Фагоцитарная активность лейкоцитов молока, %	$64,7 \pm 4,2$	33,6 ± 1,8***	
Фагоцитарный индекс лейкоцитов молока, %	$4,1 \pm 0,05$	$1,3 \pm 0,001$	
Лизоцимная активность молока, 33P микробов на агаре, мм	$23,9 \pm 0,4$	0 ±0***	
	1	I	

Примечание: разница достоверна по отношению к контролю P<0.05*, P<0.01**, P<0.001***

бактерицидность крови оказалась ниже на 10,5%, фагоцитарная активность лейкоцитов крови - на 1,8%, фагоцитарная активность лейкоцитов молока - на 5,2%, фагоцитарный индекс лейкоцитов молока на 16,7%, лизоцимная активность молока - на 6,6%. У коров черно-пестрой породы, в сравнении с коровами красной степной породы бактерицидность крови ниже на 15,8%, фагоцитарная активность лейкоцитов крови - на 6,3%, фагоцитарная активность лейкоцитов молока – на 14,1, фагоцитарный индекс лейкоцитов молока на 39,6%, лизоцимная активность молока - на 23,6%.

Таким образом, значительная напряженность обменных процессов при высокой продуктивности, максимально проявляющейся в возрасте 5-8 лет, особенно у коров черно - пестрой голштинской породы, является одним из стресс-факторов, ведущих к снижению естественной резистентности организма и местного иммунитета вымени, что способствует возникно-

вению мастита.

Проведенные нами исследования показали (табл.2), что высокая молочная продуктивность, особенно у коров черно-пестрой голштинской породы, в возрасте максимального уровня лактации, обусловливает значительную напряженность обмена веществ, о чем свидетельствует более высокий уровень содержания в сыворотке белка, сахара, минеральных веществ и каротина, но меньшее количество щелочного резерва, чем у коров с низкой молочной продуктивностью, особенно, особенно у коров-первотелок и старше 9-летнего возраста красной степной породы.

По данным таблицы 3, наиболее высокие показатели биохимического статуса крови и неспецифической естественной резистентности организма животных наблюдается в сентябре-октябре, то есть в период наиболее сбалансированного кормления, оптимальных климатических условий.

Не случайно в это время наблюдалась наиболее низкая заболеваемость коров маститом, поэтому показатели обмена веществ и естественной резистентности (в указанные месяцы) мы сочли эталонными. В сравнении с этим периодом, наибольшая заболеваемость коров маститом, наиболее низкие показатели биохимического статуса крови (на уровне нижней границы нормы) и вымени мы отметили в февралеапреле, то есть в тот период, когда запасы кормов на исходе, рацион не сбалансирован, моцион весьма ограничен, сказывается влияние низких температур и недостаток инсоляции.

В результате проведенных исследований (табл. 3.) в феврале-апреле, в сравнении с сентябрем-октябрем, содержание в сыворотке крови оказалось меньше: общего белка - на 14,7% (в основном за счет количества альфа-глобулинов - н 17,7%, гамма-глобулинов - на 13,8%), глюкозы - на 26,2%, общего кальция - на 25,2%, фосфора неорганического - на 29,6%, каротина – на 66,1%, щелочного резерва – на

32,0%, соответственно ниже бактерицидность крови – на 20,3%, фагоцитарная активность лейкоцитов крови – на 18,5%, фагоцитарная активность лейкоцитов молока – на 20,0%, фагоцитарный индекс молока на 51.3 %, лизоцимная активность молока - на 19,9 % (Р < 0,05).

Исследования показали (табл. 4.), что у коров с клинически выраженным маститом в сравнении со здоровыми коровами, общий белок - на 8,7% оказался ниже (в основном за счет снижения альфа-глобулинов на 8,1%, гамма-глобулинов – на 22,2%), глюкозы - на 21,6%, кальция общего – на 23,7%, фосфора неорганического на 26,2%, каротина - на 76,1%, щелоч- ного резерва - на 23,1%, соответственно ниже бактерицидность крови - на 19,5%, фагоцитарная активность лейкоцитов крови на – 26,4%, фагоцитар- ная активность лейкоцитов молока на - 48,1%, фагоцитарный индекс лейкоцитов молока на - 68,3%, лизоцимная активность молока значительно снизилась.

Резюме: установлено, что у коров с высокой продуктивностью, в сравнении с низкопродуктивными коровами до 4-х лет и коровами старше 5-8 лет, отмечаются более низкие показатели неспецифической иммунобиологической реактивности организма и локальной защиты вымени. Значительная напряженность обменных процессов при высокой продуктивности, максимально проявляющейся в возрасте 5-8 лет, особенно у коров черно-пестрой голштинской породы является одним из стресс-факторов, ведущих к снижению естественной резистентности организма и местного иммунитета вымени, что способствует возникновению мастита.

SUMMARY

It is found that cows with high productivitu as compared to low - yield cows up to 4 years of age and cjws olden 5-8 years have lower indices of nonspecific immunobiological reactivity and local udder protection. Considerable metabolism tension at high productivity as manifested at the age of 5-8 years, especially in the Holstein Black and White cows? Is one of the body and the local immunity udder, which contributes to mastitis.

Keywords: resistauce, milk productivity, mastitis, ade, breed, biochemical composition of blood serum.

Литература

- 1. Вершигора А.Е. Общая иммунология. Учебное пособие. - Киев; Высшая школа, 1990.-736 с.
- 2. Ивашура А.И. Система мероприятий по борьбе .с маститами коров. - М.: Росагропомиздат, 1991. -C.240.
- 3. Коляков Я.Е. Ветеринарная иммунология. -М.:
- Агропромиздат, 1986. 272 с. 4. Кузьмин Г.Н. Эпизоотические особенности, мастита кокковой этиологии у коров // Научные аспекты профилактики и терапии болезней сельско-
- хозяйственных животных: Тр. науч. конф. Ворнеж, 1996. - 4.1. -C.185-186.
- 5. Кульберг А.Я. Иммуноглобулины как биологические регуляторы.- М.: Медицина, 1975.-С. 199.
- 6. Петров Р.В. Иммунология. М.: Медицина, 1982.
- 7. Слободяник В.И. Иммунный статус коров при субклиническом мастите // Ветеринария. -1995. -№10. - C.34-38.

Контактная информации об авторах для переписки

Боженов Сергей Егорович - кандидат ветеринарных наук, старший научный сотрудник лаборатории акушерства и гинекологии;

Грига Эдуард Николаевич - доктор ветеринарных наук, профессор, заведующий лабораторией акушерства и гинекологии; тел.8 (8652) 23-22-84; Телефон и факс 71-70-33.

Грига Олег Эдуардович - кандидат ветеринарных наук, старший научный сотрудник лаборатории акушерства и гинекологии.