Контактная информации об авторах для переписки

Громов И.Н., кандидат ветеринарных наук, доцент

Селиханова М.К., аспирант, УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», Республика Беларусь

Алиев А.С., доктор ветеринарных наук, профессор

Бурлаков М.В., аспирант, ФГБОУ ВПО «Санкт-Петербургская государственная академия ветеринарной медицины», Российская Федерация

Таймасуков А.А., кандидат ветеринарных наук, Генеральный директор ОАО «Компания Кубаныптицепром»

УДК 619:639.3

Дубинин А.В., Шинкаренко А.Н.

(Волгоградский ГАУ)

БАКТЕРИАЛЬНАЯ ОБСЕМЕНЕННОСТЬ ПРОМЫСЛОВЫХ РЫБ ПРИ ДИПЛОСТОМОЗЕ И ПОСТОДИПЛОСТОМОЗЕ

Ключевые слова: Болезни рыб, диплостомоз, постодиплостомоз, бактериологическая обсемененность промысловых рыб.

Введение.

Постодиплостомоз и диплостомоз довольно широко распространенные заболевания среди рыб разных видов, как в естественных водоемах, так и в нерестово-выростных хозяйствах Волгоградской области [1,3].

Микробная обсемененность рыбы находится в прямой зависимости от количества и качества микрофлоры водоема, а так же таких факторов как паразитарные болезни. Из литературных данных следует, что рыба обсеменена преимущественно мезофильными микроорганизмами, которые и составляют группу условнопатогенных и патогенных бактерий. Причем известно, что в воду могут попасть кишечные палочки, энтерококки, сальмонеллы, шигеллы, клостридии [2].

Так как мясо рыбы по химическому составу близко к мясу млекопитающих, то при высоком уровне бактериальной обсемененности рыбы мезофильной микрофлорой, уменьшаются сроки хранения свежей и замороженной рыбы, а так же при употреблении таких рыбных продуктов в пищу возможно возникновение токсико-инфекций.

Цимлянское водохранилище является одним из крупнейших водохранилищ Волгоградской области, где ведется рыбный промысел. В связи с этим наиболее актуальным вопросом является изучение бактериальной обсемененности рыбы в условиях данного водохранилища.

Материалы и методы исследований.

Исследования рыбы проводили в условиях Цимлянского водохранилища Волгоградской области, за период 2009-2011 года. Причем исследованию подвергнуто 5860 экземпляров рыб разных видов, которые имеют основное промысловое значение для Волгоградской области - лещ, густера, судак, берш, плотва, карась, синец, сазан, толстолобик.

Диагностику диплостомоза и постодиплостомоза проводили с использованием метода полного гельминтологического вскрытия рыб по методу В.А. Догеля (1970).

Отбор проб для бактериологического исследования проводили по общепринятой методике с последующими посевами материала (образцы кожи и жабр) на общеупотребительные и специальные питательные среды. Для установления систематической принадлежности микроорганизмов были использованы определители (Краткий определитель Берги, 1980; Определитель бактерий Берджи, 1997).

Результаты исследований.

По результатам наших исследований

Таблица 1

следует, что менее всего контаминирована микрофлорой кожа рыб 260±70 КОЕ/ мл, в то время как на жабрах, нами отмечена максимально высокая бактериальная численность микроорганизмов - 2533±84 КОЕ/мл.

Так же мы установили, что качественный состав микрофлоры промысловых рыб в условиях Цимлянского водо-

хранилища представлен 7 семействами (Pseudomonadaceae, Enterobacteriaceae, Micrococcaceae, Listeriaceae, Vibrionaceae, Bacillaceae, Neisseriaceae), 4 родами (Pseudomonas, Staphylococcus, Bacillus, Listeria).

Результаты исследований представлены в таблицах №1,2.

Из приведенных данных следу-

Уровень бактериологической обсемененности промысловых рыб при диплостомозе

	Бактериологическая обсемененность промысловых рыб, КОЕ/мл									
Таксон	Лещ	Густера	Судак	Берш	Плотва	Карась	Синец	Сазан	Толсто лобик	
Сем. Enterobacteriaceae	260± 19,8	294± 35,1	-	-	280±23	274± 14,6	-	268± 24,3	-	
Сем. Neisseriaceae	-	-	-	-	-	-	-	-	-	
Сем. Vibrionaceae	-	-	-	-	-	-	-	-	-	
Сем. Saccharomycetaceae	-	-	-	-	-	-	-	-	-	
Род Azotobacter	-	-	-	-	-	-	-	-	-	
Род Bacillus	-	-	-	-	-	-	-	-	-	
Род Listeria	-	-	-	-	-	-	-	-	-	
Род Planococcus	-	-	-	-	-	-	-	-	-	
Род Pseudomonas	864± 48,2	970± 58,3	-	-	320±23,5	418± 30,3	231± 21,1	420± 23,1	-	
Pseudomonas aeruginosa	225± 26,9	359± 35	-	-	-	69±5,8	-	126± 16,4	-	
Pseudomonas alcaligenes	-	114± 11,7	-	1	-	-	-	-	-	
Род Arthrobacter	-	-	-	-	-	-	-	-	-	
Род Staphylococcus	386± 40,8	527±47	-	-	-	-	-	-	-	

Таблица 2 Уровень бактериологической обсемененности промысловых рыб при постодиплостомозе

	Бактериологическая обсемененность промысловых рыб, КОЕ/мл									
Таксон	Лещ	Густера	Судак	Берш	Плотва	Карас	Синец	Сазан	Толст олоб ик	
Сем.	420±	560±	280±	266±	416±	507±	294±	459±	260±	
Enterobacteriaceae	40,7	58,6	46,9	29,1	52,7	55,7	35,2	40,5	27,0	
Сем. Neisseriaceae	-	268±42	-	-	-	-	-	-	-	
Сем. Vibrionaceae	270± 40,8	296± 58,3	-	-	-	-	-	-	-	
Сем. Saccharomycetaceae	-	260± 73,7	-	-	-	-	-	-	-	
Род Azotobacter	-		-	-	-	-	-	-	-	
Род Bacillus	-	264± 86,6	-	-	-	-	-	-	-	
Род Listeria	260± 65,7	280± 87,1	-	-	-	-	-	-	-	
Род Planococcus	-	-	-	-	-	-	-	-	-	
Род Pseudomonas	2479± 79,4	2533±84	356± 35,3	498± 36,1	1984±4 3,4	2300± 46,7	620± 35,1	2430 ±45,6	935± 41,2	
Pseudomonas aeruginosa	1200± 67,1	1633± 159	-	-	-	1185± 192,2	-	1470 ±134	-	
Pseudomonas alcaligenes	812± 67,6	900±67	-	-	-	857± 79,5	-	921± 58,4	-	
Род Arthrobacter	-		-	-	-	-	-	-	-	
Род Staphylococcus	1100± 177,3	1720± 135	214± 20,4	341±16, 4	1256±1 64,2	1021± 84,4	362±3 4	981± 58	373± 35,6	

ет, что при диплостомозе рыба контаминирована микроорганизмами Сем. Enterobacteriaceae и рода Pseudomonas.

Однако при постодиплостомозе такие виды промысолвых рыб как густера, плотва, карась, сазан и толстолобик имеют бо-

лее высокий уровень обсемененности микрофлорой Сем. Enterobacteriaceae, рода Pseudomonas (Pseudomonas aeruginosa), рода Staphylococcus, относящихся к возбудителям токсикоинфекций.

Резюме: В статье приведены результаты изучения бактериальной обсемененности промысловых рыб при диплостомозе и постодиплостомозе в условиях Цимлянского водохранилища Волгоградской области.

SUMMARY

There are described the results of studying of bacterial semination of marketable fish in diplostomose and postodiplostomose under conditions of Tsimlyansky reservoir of Volgograd region.

Keywords: diseases of fishes, diplostomose, postodiplostomose, bacteriological semination of marketable fish

Литература

- 1. Васильков, Г.В. Гельминтозы рыб / Г.В. Васильков. М.: Колос, 2003. 208 с.
- 2. Грищенко, Л.И. Болезни рыб и основы рыбоводства / Л.И. Грищенко. М.: Колос, 1999. -278 с.
- 3. Федоткина, С.Н. Паразитофауна рыб в естественных и искусственных водоемах Волгоградской области/ С.Н. Федоткина, А.Н. Шинкаренко//Изве-
- стия Нижневолжского агроуниверситетского комплекса.- Волгоград, 2007.-№4.-С. 98-100.
- 4. Беретарь И.М. Паразитофауна белого толстолобика в прудовых хозяйствах Краснодарского края. Краснодар. Ветеринария Кубани, № 5, 2009. с. 10-11.

Контактная информации об авторах для переписки

Дубинин Александр Валерьевич, аспирант, ФГБОУ ВПО «Волгоградский государственный аграрный университет», г. Волгоград, пр. Университетский, д. 24а, (8442)411619 (раб), e.mail: Dubinin134@mail.ru

Шинкаренко Александр Николаевич, доктор ветеринарных наук, заведующий кафедрой инфекционной патологии и судебной ветеринарной медицины, ФГБОУ ВПО «Волгоградский государственный аграрный университет», г. Волгоград, пр. Университетский, д. 24а, (8442)411619 (раб), e.mail: ash28@yandex.ru

УДК 619:616.98:578.824.91:636.22/.28:616-078

Константинова Е.А., Диев В.И.

(Федеральный центр охраны здоровья животных (ФГБУ «ВНИИЗЖ»))

РАЗРАБОТКА НЕПРЯМОГО ВАРИАНТА ИММУНОФЕРМЕНТНОГО АНАЛИЗА ДЛЯ ОБНАРУЖЕНИЯ АНТИТЕЛ К ВИРУСУ ЭФЕМЕРНОЙ ЛИХОРАДКИ КРУПНОГО РОГАТОГО СКОТА

Ключевые слова: вирус эфемерной лихорадки крупного рогатого скота, иммуноферментный анализ

Введение

Эфемерная лихорадка (ЭЛ) (трехдневная лихорадка, эпизоотическая лихорадка) – острая вирусная трансмиссивная болезнь крупного рогатого скота (КРС), характеризуется кратковременной лихо-

радкой, воспалением слизистой оболочки глаз, носовой и ротовой полостей, а в тяжелых случаях - параличами и хромотой, снижением лактации [6, 7, 8]. Встречается в тропических и субтропических зонах, в том числе в сопредельных с Россией госу-