УДК: 619:616.2:616.33/.34:636.4

Бригадиров Ю.Н., Казимиров О.В., Борисенко С.В., Бердников М.Л., Михайлов Е.В., Модин А.Н., Борисенко Н.А., Манжурина О.А., Давыдова В.В.

(ГНУ Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии РАСХН)

КОМПЛЕКСНАЯ СИСТЕМА МЕРОПРИЯТИЙ ПО ПРОФИЛАКТИКЕ И БОРЬБЕ С РЕСПИРАТОРНЫМИ И ЖЕЛУДОЧНО-КИШЕЧНЫМИ БОЛЕЗНЯМИ СВИНЕЙ В СОВРЕМЕННЫХ УСЛОВИЯХ ПРОИЗВОДСТВА

Ключевые слова: свиньи, мониторинг, антимикробные препараты, вакцины.

Введение. В условиях интенсивного ведения свиноводства увеличивается риск возникновения как моно -, так и смешанных инфекций среди свиней различных возрастных групп, вызываемых вирусами и бактериями на фоне многочисленных нарушений технологии содержания и кормления, а также стрессовых ситуаций. Углубленное изучение их этиологической структуры вскрыло поразительную картину многообразия смешанных инфекций, протекающих тяжелее, длительнее, часто с осложнениями и высокой летальностью [1].

Анализ структуры заболеваемости свиней по регионам Российской Федерации и в целом по стране показывает, что за последние 10-15 лет на фоне относительно стабильного эпизоотического благополучия по классическим инфекциям (КЧС, болезнь Ауески, рожа свиней) из года в год более 70% поросят переболевает различными инфекционными заболеваниями, в основном проявляя синдромы нарушения функции систем органов пищеварения и дыхания. Причем из числа заболевших ежегодно, в среднем по стране, погибает 28-37% поросят [2, 3].

Цель исследования. Разработка комплексной системы мероприятий по профилактике и борьбе с респираторными и желудочно-кишечными болезнями свиней.

Методика исследования. В одном из хозяйств Воронежской области, рассчитанном на получение и выращивание 36-38 тысяч поросят в год регистрировали повышенную заболеваемость свиней на доращивании и откорме с респираторным синдромом, поросят – сосунов и свиней группы доращивания с желудочно- кишечной патологией.

В январе - феврале 2010 г. клинико - эпизоотологическими исследованиями бы-

ло установлено, что респираторные болезни свиней в хозяйстве регистрировались на протяжении всего производственного цикла. Наиболее широко они были распространены среди животных группы доращивания и откорма. Бактериологическими и молекулярно – генетическими (ПЦР) исследованиями патологического материала от свиней этих возрастных групп проведенными во Всероссийском НИВИ патологии, фармакологии и терапии, была установлена роль вируса РРСС, цирковируса 2 типа, микоплазм (M. hyopneumoniae, М. hyorhinis), гемофил (H. parasuis), актинобацилл (A.pleuropneumoniae), пастерелл (P. multocida) и сальмонелл (S. cholerae suis и S. typhimurium) в этиологии респираторных болезней свиней. В большинстве случаев они протекали по типу ассоциированных инфекций, вызванных указанными возбудителями. Заболеваемость животных составляла (60-70%), а падёж (30-40%).

Для специфической профилактики респираторных болезней, супоросным свиноматкам на 70 и 100 дни супоросности применяли поливалентную инактивированную вакцину «Донобан - 10», которая содержит антигены: Bordetella bronchiseptica, Pasteurella multocida тип A и Д, Actinobacillus pleuropneumoniae ceротипы 2 и 5, Mycoplasma hyopneumoniae, Streptococcus Suis тип 2 и Haemophilius ceротип parasuis 1.4 и 5, а поросятам на 30-35 и 55-60 дни жизни - сухую культуральную вирусвакцину против РРСС из аттенуированного штамма «БД-ДЕП» - ВНИИЗЖ (г. Владимир) и поливалентную инактивированную вакцину «Донобан-10» (производство Южная Корея).

Для изучения терапевтической эффективности антимикробных препаратов подобрали 909 поросят группы доращивания больных респираторной патологией,

которых разделили на 4 группы. Поросятам 1-ой группы (n=169) применяли «Диоксинор – оральный» в дозе: - 1мл/10кг массы тела с интервалом 24 часа 1 раз в сутки, в течение 7 дней. Поросятам 2-ой группы (n=167) - Энрофлон 10% в дозе 0,5мл/10кг массы тела один раз в день 7 дней подряд (базовый вариант). Животным 3-й группы (n=303) -«Тилоколин - оральный» 1 раз в сутки в течение 7 дней в дозе: - 1г/10кг массы тела. Поросятам 4-й группы (n=270) - Фармазин в дозе 10мг/кг массы тела один раз в день 7 дней подряд (базовый вариант).

В качестве базового варианта были взяты энрофлон и фармазин потому, что к ним оказались чувствительны выделенные из патологического материала поросят пастереллы, сальмонеллы и микоплазмы.

Клинические испытания комплексных антимикробных препаратов, проводили на поросятах группы доращивания. Для опыта подобрали 1246 голов поросят больных желудочно-кишечными болезнями, которых разделили на 4 группы.

Животным 1-й группы (n = 340) применяли «Диоксинор – оральный» в течение 5 дней 1 раз в день в дозе – 1мл/10кг массы тела.

Поросятам 2-й группы (n = 377) - «Тилоколин - оральный» - один раз в сутки в течение 5 дней в дозе 1r/10кг массы тела.

Животным 3-й группы (n =362) Тераголд в дозе 2 г/10кг ДВ/кг массы тела один раз в день 5 дней подряд.

Поросятам 4-й группы (n= 167) – Энрофлон 10% раствор для орального применения один раза в сутки в дозе 0,5мл/10кг массы тела в течение 5 дней (базовый вариант).

За подопытными животными группы доращивания, с желудочно-кишечными заболеванием, в течение срока назначения препаратов вели клиническое наблюдение, учитывали выздоровление, сохранность, общее состояние.

Диагноз и этиологию желудочно-кишечных болезней устанавливали на основании эпизоотологических, клинических, патологоанатомических данных и результатов лабораторных исследований. При бактериологическом исследовании патологического материала от 2-х вынужденно убитых с диагностической целью животных 40-50 дневного возраста, с желудочно-кишечной патологией выделены бета – гемолитические культуры Escherichia coli серологических вариантов О139, О141, вызывающие отёчную болезнь поросят и Salmonella cholerae suis. Выделенные культуры эшерихий и сальмонелл оказались чувствительны к тилозину, норфлоксацину, диоксидину и к сочетаниям: диоксидин+норфлоксацин; тилозин+колистин.

Результаты исследования. Учитывая широкое распространение респираторных болезней, их полиэтиологичность, был разработан комплекс мероприятий, включающий: проведение плановых обработок свинопоголовья с применением новых антибактериальных препаратов широкого спектра действия и аэрозольную дезинфекцию помещений (Полизоль-С, Вироцид, Экоцид, Виркон, Глютекс и др.) в присутствии животных для снижения контаминации воздуха возбудителями вирусной и бактериальной природы, а также комплексную вакцинопрофилактику с использованием отечественных и зарубежных вакцин.

За подопытными животными группы доращивания с респираторной патологией в течение 10 дней вели ежедневное клиническое наблюдение, учитывали количество выздоровевших животных, падеж, общее состояние. Результаты клинических испытаний комплексных препаратов представлены в таблице 1

Данные таблицы 1 свидетельствуют о том, что терапевтическая эффективность применения препарата «Диоксинор оральный» при респираторной патологии свиней составила 91,2%, что превышает препарат сравнения на 6,7% соответственно. Падеж поросят в 1-й группе составил 5 (3,0%), во 2-й группе пало 14 (8,4%) животных. Осталось больными животных в первой группе 10 (5,9%), а во второй группе 12 (7,2%). Терапевтический эффект применения препарата «Тилоколин - оральный» составил 94,1%, что превышает препарат сравнения на 4,4% соответственно. При этом падеж поросят в третьей группе составил 7 (2,3%), а в группе базового варианта пало 9 (3,3%) животных. Осталось больными животных в третьей группе 11 (3,6%), а в четвёртой группе 19 (7.0%).

Таким образом, проведение комплекса мероприятий с использованием эффективных средств специфической профилактики (моно- и поливалентные вакцины), аэрозольные обработки в присутствии животных и комплексных антимикробных препаратов широкого спектра действия «Диоксинор оральный», «Тилоколин – оральный» при респираторных болезнях бактериально-микоплазменной этиологии

Таблица 1
Сравнительная терапевтическая эффективность комплексных препаратов
при респираторных болезнях поросят

	Группы животных				
Показатели	Диоксинор оральный	Энрофлон 10% (схема хозяйства)	Тилоколин оральный	Фармазин (схема хо- зяйства)	
Количество животных, голов	169	167	303	270	
Количество выздоровевших животных, гол, %	154 91,1	141 84,4	285 94,1	242 89,7	
Осталось больными животных, голов, (%)	10 5,9	12 7,2	11 3,6	19 7,0	
Количество павших животных, голов, (%)	5 3,0	14 8,4	7 2,3	9 3,3	

обеспечило снижение заболеваемости и гибели поросят.

В период с февраля по март 2010г., в хозяйстве было зарегистрировано массовое заболевания свиней с диарейным синдромом.

Наиболее типичное клиническое проявление болезни отмечено у глубокосупоросных свиноматок после опороса и у новорожденных поросят.

Заболевание свиноматок сопровождалось слабостью, снижением аппе-тита, повышенной жаждой, часто рвотой, агалактией и поносом с выделением жидких фекалий зеленовато-коричневой окраски, гнилостного запаха, повышение температуры тела наблюдали редко. Несмотря на довольно тяжелые клинические симптомы, болезнь у большинства свиноматок протекала доброкачественно и к 5-7 дню заканчивалась вы-здоровлением.

У новорожденных поросят заболевание проявлялось рвотой, профузным поносом, потерей аппетита, резкой слабостью, дегидратацией и быстро развивающимся истощением. Кожные покровы приобретали сероватую окраску и были выпачканы фекалиями. Заболеваемость достигала 50-60%, летальность 90-100%. За март 2010 г. из 2694 полученных поросят вынужденно убито 1727 и пало 447 голов, т.е. падеж и вынужденный убой составил 80,7%.

У поросят старших возрастов болезнь протекала более доброкачественно, сопровождалась теми же, но менее выраженными симптомами (слабость, снижение аппетита, понос, исхудание) и по мере увеличения возраста снижением летальности.

У взрослых свиней заболевание проявлялось кратковременным поносом без заметного нарушения общего состояния. У части животных клинические признаки не регистрировали.

Из эпизоотических особенностей заболевания следует отметить быст-роту его распространения среди имевшегося поголовья, нарастание числа неблагополучных опоросов, высокую заболеваемость и летальность поросят-сосунов первых дней жизни.

При патологоанатомическом вскрытии павших поросят-сосунов отме-чали дегидратацию организма, катаральное воспаление слизистой оболочки желудка и кишечника, дистрофию, некроз, десквамацию клеток ворсинок эпителия слизистой тощей и подвздошной кишок, точечные кровоизлияния в почках.

При молекулярно - генетическом (ПЦР) исследовании патологического материала от 8 вынужденно убитых поросят, проведенном во ВНИВИПФиТ, в 4-х пробах выявлен антиген коронавируса - возбудитель трансмиссивного гастроэнтерита свиней и ротавирусной инфекции.

На основании эпизоотологических данных, результатов клинического обследования животных, патологоанатомического вскрытия и лабораторных исследований на свиноводческом комплексе установлен трансмиссивный гастроэнтерит свиней и ротавирусная инфекция. ТГС в хозяйстве регистрировали и ранее, то есть он имеет стационарный ха-рактер.

Наряду с выше описанными изменениями, в этот же период отмечали повышенную заболеваемость и гибель животных более старшего возраста.

При патологоанатомическом вскрытии у 13-20 дневных поросят (n=38) наблюдали геморрагический энтерит, характерный для анаэробной энтеротоксимии.

Бактериологическими исследованиями тонкого отдела кишечника от вынужденно убитых поросят (n=5) аналогичного возраста, из слизистой и подслизистой стенки кишечника всех поросят был выделен возбудитель Cl. perfringens. В реакции нейтрализации на белых мышах у выделенного возбудителя Cl. perfringens установлен токсин тип A.

Отягчающим фактором в возникновении и проявлении этих заболеваний (ТГС и анаэробной энтеротоксимии) являлись корма с повышенным содержанием соли и их контаминация микотоксинами, в частности, зеараленоном в субтоксических (0.02 мг/кг - 0.25 мг/кг) концентрациях.

После проведения комплекса мероприятий с применением нативного материала супоросным свиноматкам на 75-85 и 95 дни жизни, дезинфекции родильных отделений (4 раза в неделю) в присутствии животных с использованием эффективных средств (Полизоль-С, Вироцид, Экоцид, Виркон и др.), падеж и вынужденный убой поросят значительно сократился. Так, за апрель получено 1362 поросенка, из них пало и вынужденно убито 366 голов или 26,9% от числа народившихся. В дальнейшем свиноматкам на 85-95 дни супоросности была рекомендована комбиниро-

ванная живая вакцина XИМ - BAK (TGE ROTA – производство Южная Корея).

С целью обеспечения эпизоотического благополучия по анаэробной энтеротоксимии проводилась специфическая профилактика свиноматок на 70-100 дни супоросности с использованием инактивированной поливалентной вакцины, против клостридиоза овец и свиней «Когламун», в состав которой входит антиген Cl. perfringens тип A.

При применении живой комбинированной вакцины против ТГС и ротовирусной инфекции ХИМ - ВАК (ТGE ROTA) и инактивированной поливалентной вакцины «Когламун» удалось стабилизировать ситуацию по трансмиссивному гастроэнтериту, ротавирусной инфекции и анаэробной энторотоксимии (дизентерии) свиней.

После стабилизации ситуации по короновирусной инфекции и клостридиозу в этот же период (март – апрель) на участке доращивания отмечали повышенную заболеваемость поросят желудочно-кишечными заболеваниями, из 2507 голов поросят заболело желудочно-кишечными болезнями 1390 (55,4%) животных, из них пало 123 головы (8,8%).

Клинические испытания комплексных антимикробных препаратов при желудочно-кишечных болезнях поросят бактериальной этиологии представлены в таблице 2.

Результаты таблицы 2 свидетельствуют о том, что терапевтический эф-фект после применения препарата «Диоксинор оральный» при желудочно-кишечной патологии поросят составил 92,4%, при этом

Таблица 2 Сравнительная терапевтическая эффективность комплексных препаратов при желудочно-кишечных болезнях поросят

	Группы животных				
Показатели	Диоксинор	Тилоколин	Тетраголд	Энрофлон 10% (схема хозяй-	
	оральный	оральный	оральный	ства)	
Количество животных, голов	340	377	362	167	
Количество выздоровевших животных, гол, %	314	354	339	142	
	92,4	93,9	93,6	85,0	
Осталось больными животных, голов, (%)	16	15	14	15	
	4,7	4,0	3,9	9,0	
Количество павших животных, голов, (%)	10	8	9	10	
	2,9	2,1	2,5	6,0	

пало 10 (2,9%) животных, осталось больными 16 (4,7%) поросят. После применения препарата «Тилоколин - оральный» терапевтический эффект составил 93,9%, пало 8 (2,1%) поросят, осталось больными 15(4,0%) животных. В группе где применяли Тетраголд терапевтический эффект составил 93,6%, а падёж - 9 (2,5%) животных, осталось больными 14 (3,9%) поросят. В группе базового варианта (Энрофлон 10%) терапевтическая эффективность составила 85%, при этом пало 10 (6%) по-

росят, а осталось больными 15 (9%) животных.

Проведенные исследования показали, что применение новых комплексных антибактериальных препаратов широкого спектра действия, «Диоксинор - оральный», «Тилоколин - оральный» и «Тетраголд» способствовало снижению заболеваемости поросят желудочно - кишечными болезнями бактериальной этиологии на доращивании.

Резюме: Проведение мероприятий с использованием комплексных антибактериальных препаратов, эффективных средств специфической профилактики, улучшение санитарного состояния помещений, строгое соблюдение принципа «пусто – занято», позволило значительно снизить заболеваемость и падёж поросят от желудочно-кишечных и респираторных болезней на всём протяжении производственного цикла

SUMMARY

Event Management with integrated antimicrobial agents, effective means of specific prevention, improvement of sanitary condition of the premises, strict adherence to the principle of «empty - busy,» significantly reducing morbidity and mortality of piglets from the gastro-intestinal and respiratory diseases throughout the production cycle.

Keywords: pigs, monitoring, antimicrobic preparations, vaccines.

Литература

- 1. Гаффаров Х.З., Романов Е.А. Инфекционные болезни свиней и современные средства борьбы с ними Казань: РИЦ «Школа», ООО «Шестой элемент», 2003. 199 с.
- 2. Орлянкин Б.Г. Инфекционные респираторные болезни свиней: этиоло-гия, диагностика и профи-
- лактика / Б.Г. Орлянкин, Т.И. Алипер, А.М. Мишин // Свиноводство.- 2010.- №3.- С.67-69.
- 3. Тамбиев Т.С., Малышева Л.А. Ассоциативные желудочно-кишечные ин-фекции молодняка свиней в Ростовской области // Ветеринарная патоло-гия. 2010. №4. С.88-92.

Контактная информации об авторах для переписки

Бригадиров Юрий Николаевич, доктор ветеринарных наук, заведующий лабораторией диагностического мониторинга испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. 394087, г. Воронеж, ул. Ломоносова 114/б, тел.: (473)253-92-81 E-mail: icrsa@mail.ru

Казимиров Олег Викторович – младший научный сотрудник лаборатории диагностического мониторинга испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81, E-mail: kazimirov777@mail.ru **Борисенко Станислав Витальевич** – младший научный сотрудник лаборатории диагностического мониторинга испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81,

Бердников Максим Леонидович – Аспирант лаборатории диагно-стического мониторинга испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. (научный руководитель Бигадиров Ю.Н.) 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81 Михайлов Евгений Владимирович - кандидат ветеринарных наук, старший научный сотрудник лаборатории диагностического мониторинга испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81 Е-mail: icrsa@mail.ru

Модин Алексей Николаевич - кандидат ветеринарных наук, млад-ший научный сотрудник лаборатории диагностического мониторинга испытательного центра ГНУ «Всерос-

сийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81 E-mail: icrsa@mail.ru

Борисенко Наталья Александровна – младший научный сотрудник лаборатории биохимии крови испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии.

394087, г. Воронеж, ул. Ломоносова 114/б, тел.: (473)253-92-81, E-mail: icrsa@mail.ru

Манжурина Ольга Алексеевна - кандидат ветеринарных наук, ведущий научный сотрудник лаборатории диагностики инфекционных и инвазионных болезней испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии, 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81, E-mail: icrsa@mail.ru

Давыдова Виктория Владимировна - младший научный сотрудник лаборатории диагностики инфекционных и инвазионных болезней испытательного центра ГНУ «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» Россельхозакадемии. 394087, г. Воронеж, ул. Ломоносова 114/6, тел.: (473)253-92-81, E-mail: icrsa@mail.ru

УДК 619:616.98:579

Егорова И.Ю., Цыбанова В.А.

(ГНУ Всероссийский научно-исследовательский институт ветеринарной вирусологии и микробиологии Россельхозакадемии)

ДИКИЕ ЖИВОТНЫЕ КАК ИСТОЧНИК ПИЩЕВЫХ ТОКСИКОИНФЕКЦИЙ ЧЕЛОВЕКА

Ключевые слова: дикие животные, пищевые токсикоинфекции, L. monocytogenes

Инфекционные заболевания наносят значительный ущерб не только промышленному животноводству, но и фауне диких теплокровных животных. В частности, такие инфекции как сибирская язва, чума крупного рогатого скота, ящур не раз служили причиной гибели десятков тысяч диких травоядных животных на разных континентах, а ботулизм, пастереллез, вирусная геморрагическая болезнь уток вызывали массовую гибель дикой водоплавающей птицы [В.Е. Соколов, В.П. Шишков, В.В. Березин, 1988]. При этом проблема инфекционной патологии диких животных тесно связана с проблемой патологии сельскохозяйственных и домашних животных, а также человека. О последнем свидетельствуют то, что большинство случаев заболевания людей бешенством связано именно с дикими теплокровными [В.М. Фомушкин, 1988]. Анализ данных мировой литературы, проведенный И.А. Бакуловым, Г.Ф. Коромысловым и В.А. Ведерниковым (1988) показал, что такие вирусные болезни приматов, как лихорадки Марбург, Денге, долины Рифт, оспа обезьян представляют опасность и для человека. По данным этих же авторов наибольшую опасность для человека представляют грызуны, являющиеся носителями зооантропонозной чумы, туляремии, геморрагической лихорадки с почечным синдромом, аргентинской и боливийской лихорадок, цуцугамуши, бешенства, листериоза, Ку-лихорадки и др.

Учитывая, что в некоторых странах мира в рацион человека входят мясо и мясопродукты диких животных, являющихся носителями возбудителей многих болезней, то возрастает риск возникновения инфекций среди человека. Так, например, существует мнение о том, что заражение людей в Китае атипичной пневмонией прои-