APPLICATION OF CELL THERAPY ON THE EXAMPLE OF INDUCED SUGAR DIABETES USING AN UNDIVIDED BONE MARROW STEM CELL POPULATION
https://doi.org/10.25690/VETPAT.2020.1.71.013
Abstract
A study on the use of cell therapy using an undivided population of bone marrow cells as a therapy for streptozotocin-induced diabetes mellitus in mice line C57Bl/6 was conducted from 2013 to 2014. We presented the results of the assessment of migration activity, engraftment, and distribution of an undivided bone marrow stem cell population in the body of female mice recipient line C57Bl/6 with streptozotocin-induced diabetes mellitus (type 1). Using polymerase chain reaction, the migration and distribution of donor cells in the organs of female recipients were studied. To identify the accumulation and distribution of transplanted donor GFP cells, a histological examination was performed. It was shown that an undivided population of bone marrow stem cells not only migrates and is distributed in the affected area, but also affects its regeneration. As a result, this therapeutic approach can become the basis for the development of methods and methods of cell therapy in regenerative medicine and veterinary medicine. This can further contribute to the development of new technologies and tools for the treatment and maintenance of patients with severe pathology, not only in veterinary medicine, but also in human medicine.
About the Authors
T. V. MillerRussian Federation
G. V. Karantysh
Russian Federation
A. N. Vovk
Russian Federation
L. D. Safronova
Russian Federation
A. M. Ermakov
Russian Federation
References
1. Nelson R. W. Animal models of disease: classification and etiology of diabetes in dogs and cats / R. W. Nelson, C. E. Reusch // J Endocrinol. - 2014. - V. 222 (3). - P. 1-9
2. Гарелик П. В. Синдром диабетической стопы как социальная проблема / П. В. Гарелик, О. И. Дубровщик, Г. Г. Мармыш и др. // Научно-практическая конференция с международным участием «Современные проблемы общественного здоровья и здравоохранения». Сборник научных трудов. - 2016. - С. 39-42
3. Павлова М. Г. Современные методы диагностики и лечения синдрома диабетической стопы / М. Г. Павлова, М. Ф. Калашникова, Т. В. Гусов и др. // Клиницист. - 2007. - № 3. - С. 21-29
4. Rask-Madsen C. Vascular complications of diabetes: mechanisms of injury and protective factors / C. Rask-Madsen, G. L. King // Cell Metab. - 2013. - V. 17 (1). - P. 20-33
5. Kurihara O. Coronary atherosclerosis is already ongoing in pre-diabetic status: Insight from intravascular imaging modalities / O. Kurihara, M. Takano, K. Mizuno [et аl.] // World J Diabetes. - 2015. -V. 6 (1). - P. 184-191
6. Stehouwer C. D. A. Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle with Widespread Consequences / C. D. A. Stehouwer // American Diabetes Association. - 2018. - V. 67 (9). - P. 1729-1741
7. Gokhale P. J. A Prospective on Stem Cell Research / P. J. Gokhale, P. W. Andrews // Thieme Medical Publishers. 2006. -V. 24 (5). - P. 289-297
8. Zuk P. A. Human adipose tissue is a source of multipotent stem cells / P. A. Zuk, M. Zhu, P. Ashjian [et аl.] // Mol Biol Cell. - 2002. - V. 13 (12). - P. 4279-4295
9. Пальчикова Н. А. Гормонально-биохимические особенности аллоксановой и стрептозотоциновой моделей экспериментального диабета / Н. А. Пальчикова, Н. В. Кузнецова, О. И. Кузьминова и др. // Бюллетень СО РАМН. - 2013. - Т. 33 (3). - С. 18-24
10. Gholamrezanezhad A. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis / A. Gholamrezanezhad, S. Mirpour, M. Bagheri [et аl.]
11. Lykov A. P. Biomedical cellular product for wound healing / A. P. Lykov, N. A. Bondarenko, O. V. Poveshchenko [et аl.] // Integrative Obesity and Diabetes. - 2015. - V. 2 (1). - P. 176-179
12. Palumbo R. High mobility group box 1 protein, a cue for stem cell recruitment / R. Palumbo, M. E. Bianchi // Biochem Pharmacol. - 2004. - V. 68 (6). - P. 1165-1170
13. Rogal J. Stem-cell based organ-on-a-chip models for diabetes research / J. Rogal, A. Zbinden, K. Schenke-Layland [et аl.] // Advanced Drug Delivery Reviews. - 2019. - V. 140. - P. 101-128
14. Okumoto K. Characteristics of rat bone marrow cells differentiated into a liver cell lineage and dynamics of the transplanted cells in the injured liver / K. Okumoto, T. Saito, H. Haga // Journal of Gastroenterology. - 2006. - V. 41 (1), - P. 62-69
15. Sun S. Differentiation and Migration of Bone Marrow Mesenchymal Stem Cells Transplanted through the Spleen in Rats with Portal Hypertension / S. Sun, G. Chen, M. Xu [et аl.] // PLoS ONE. - 2013. - V. 8 (12). - P. 483-523
16. Jia X. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury / X. Jia, X. Xie, G. Feng [et аl.] // BMC Nephrol. - 2012. - V. 13 (105). - P. 1-9
17. Lee P. T. Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury / P. T. Lee, H. H. Lin, S. T. Jiang [et аl.] // Stem Cells. - 2010. - V. 28 (3). - P. 573-584
18. Qiao S. K. Allogeneic Compact Bone-Derived Mesenchymal Stem Cell Transplantation Attenuates the Severity of Idiopathic Pneumonia Syndrome in a Murine Bone Marrow Transplantation Model / S. K. Qiao, H. Y. Ren, Y. J. Shi [et аl.] // Cell Physiol Biochem. - 2016. -V. 40 (6). - P. 1656-1669
19. Zlotoff D. A. Hematopoietic progenitor migration to the adult thymus / D. A. Zlotoff, A. Bhandoola // PMC. - 2012. - V. 1217. - P. 122-138
20. Borlongan C. V. The Great Migration of Bone Marrow-Derived Stem Cells Toward the Ischemic Brain: Therapeutic Implications for Stroke and Other Neurological Disorders / C. V. Borlongan, L. E. Glover, N. Tajiri [et аl.] // Prog Neurobiol. - 2011. - V. 95 (2). - P. 213-228
Review
For citations:
Miller T.V., Karantysh G.V., Vovk A.N., Safronova L.D., Ermakov A.M. APPLICATION OF CELL THERAPY ON THE EXAMPLE OF INDUCED SUGAR DIABETES USING AN UNDIVIDED BONE MARROW STEM CELL POPULATION. Russian Journal of Veterinary Pathology. 2020;(1):57-67. (In Russ.) https://doi.org/10.25690/VETPAT.2020.1.71.013