Preview

Russian Journal of Veterinary Pathology

Advanced search

ANALYTICAL MATHEMATICAL MODELING OF THE MOSQUITOES POPULATION IN THE KALUGA REGION

https://doi.org/10.25690/VETPAT.2020.34.74.004

Abstract

Mosquitoes are temporary blood-sucking parasites involved in the circulation of pathogens of many dangerous vector-borne infections and invasions. The spread of diseases and their transmission depends on the climate, the rate of transmission of pathogens, and population dynamics. There are many methods for constructing models of both biological objects and infections and invasions directly. This article discusses the issue of constructing an analytical mathematical model of the mosquito population size depending on the influence of three factors: average monthly annual temperature, average monthly precipitation and average atmospheric pressure per year. The obtained analytical model makes it possible to evaluate the indfluence of all the selected factors on the number of mosquitoes, both individually and in sum. The greatest influence on the number of mosquitoes is exerted by the average monthly precipitation, which may be explained by the peculiarities of the biology and ecology of arthropods. In general, analytical models make it possible to control the monitoring of the number of mosquitoes not only in the Kaluga region, but also in territories with similar climatic and geographic data. Mathematical modeling of temporary ectoparasites (mosquitoes) makes it possible to predict outbreaks of parasitic vector-borne zoonotic diseases.

About the Author

A. M. Nikanorova
«Moscow Agricultural Academy named after K. A. Timiryazev»
Russian Federation


References

1. Балашов Ю. С.. Паразитизм клещей и насекомых на наземных позвоночных. - СПб.: Наука, 2009. - 357 с

2. Балашов Ю. С. Значение популяционной структуры иксодовых клещей (Ixodidae) для поддержания природных очагов инфекций. Зоол. журн. 89. - 2010. - 18-25

3. Randolph S. E. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid tick vectors. Parasitology. 129: 37-65 2004

4. Pietiküinen R. Dirofilaria repens transmission in southeastern Finland / R. Pietiküinen, S. Nordling, S. Jokiranta, A. Lavikainen [at al.] // Parasites & Vectors. - 2017. - V. 10. - № 1. - P. 561

5. Ross R. The privention of malaria. (2nd edn.). Murray. London, section 66. 1911. 651 p; К о el la J. C. On the use of mathematical models of malaria transmission // Acta Tropica. - 1991. - Vol. 49. - P. 1-25

6. Koelle K. Pathogen adaptation to seasonal forcing and climate change / K. Koelle, M. Pascual, Md. Yunus // Proceedings of the Royal Society B: Biological Sciences, 272:971- 977, 2005

7. Diekmann O. The construction of nextgeneration matrices for compartmental epidemic models / O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts // Journal of the Royal Society Interface, 7:873-885, 2010

8. Методические указания: Сбор, учет и подготовка к лабораторному исследованию кровососущих членистоногих в природных очагах опасных инфекционных болезней утв. Главным государственным санитарным врачом Онищенко Г. Г. 4 апреля 2012 г

9. Калмыков В. В. Основные статистические методы анализа результатов экспериментов / В. В. Калмыков, О. С. Федорова // Электронный журнал: наука, техника и образование. - 2016. - № 1 (5). - С. 68-75


Review

For citations:


Nikanorova A.M. ANALYTICAL MATHEMATICAL MODELING OF THE MOSQUITOES POPULATION IN THE KALUGA REGION. Russian Journal of Veterinary Pathology. 2020;(4):12-16. (In Russ.) https://doi.org/10.25690/VETPAT.2020.34.74.004

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-4826 (Online)